
Gomoku Report

Xinhuai Deng 11610320
School of Computer Science and Engineering

Southern University of Science and Technology
Email:11610320@mail.sustc.edu.cn

1. Preliminaries

This project is a artificial intelligent algorithm designed
for Gomoku. Gomoku is a very famous and traditional
game where two players put different chess in turn to get
a five connection for the win. What is more, it is perfect
information and zero-sum game. That is to say, every state
in such a game is deterministic and the environment is fully
observable. [1] So the state of Gomoku is easy to represent
and the goal of an agent is conflict. These become the reason
why I choose classical adversarial search algorithm - The
Mini-Max algorithm, which is stable and competitive.

The software used in the project is Python 3.6 with IDE
called Pycharm. And the packeges used in Python is numpy
and random.

2. Methodology

In this section, the general representation and structure
of the project will be presented first, and then I will discuss
how I designed my code and accelerate it.

2.1. Representation

The chessboard has already defined in the given project
interface as a numpy 15× 15 array, and value 1 represents
the White chess while -1 represents Black chess. The default
value 0 means there is no chess in the current position.

With regard to the representation of Gomoku game state,
I use a simple python tuple to represent it. The five elements
of the tuple are shown in table1.

TABLE 1. STATE TUPLE

state[0] chessboard
state[1] player
state[2] last move
state[3] utility
state[4] board hashing value

2.2. Architecture

As required, the project should contain a class named
AI, and it should contain a method called go. And go take

a parameter of the chessboard and returns a candidate list
where the last item will be the next move.

The project contains two classes and the general struc-
ture of them are listed as follows:

• AI:
– go(chessboard). This method takes current

chessboard and returns the candidate list
where the last item will be the next move.

– first chess(). Because the minimax algorithm
is very slow for the first and second move and
it is not necessary to search the adversarial
tree, I set the first move to be the center
position (tianyuan).

– second chess(). When the color is white, the
first move of this player is set as the neighbor
of the first move.

• Game:
– actions(state). This method takes current

chessboard and returns all the empty point
where chess can be put.

– result(gamestate,move). This method takes
the current move and the previous state to
generate a new state which is consisted of
current chessboard and player and the utility
of the state.

– terminal test(state). This method tests
whether the state is a terminal state. And
in Gomoku game, the terminal state should
contain a chessboard where there is a five
connection in an arbitrary direction.

– alphabeta cutoff search(gamestate,search
depth). This method is the key method of my
adversarial search, using alpha-beta pruning
and cutoff terminal test.

– eval fn(state). The method is employed when
the cutoff terminal test is true. It will return
a value to represent the current situation of
input state. And the higher the grade is, the
more advantageous to the player it can be.

2.3. Mini-max tree search Algorithm

Generally speaking, the project is actually a state-space
search algorithm which could roughly be separated into four



parts: states, actions, transition model an terminal test. The
structure of state and the description of the action and the
terminal test has been shown in the previous subsection. So
in this subsection, I will introduce the detail of my alpha-
beta cutoff search which is the transition model of my state-
space search.

Algorithm 1 Mini-Max cutoff algorithm
Input: the current game state
Output: the best actions in actions(state)

1: function ALPHABETA CUTOFF SEARCH(state)
2: value←MAX-VALUE(−∞,+∞, 0)
3: return the action with max value value
4: end function
5:
6: function MAX-VALUE(state, α, β)
7: if TERMINAL-TEST(state) then
8: return +∞ if win, −∞ if lose
9: end if

10: if CUTOFF-TEST(state) then
11: return EVAL-FN(state)
12: end if
13: for each a in ACTIONS(state) do
14: v ←MAX(v, MIN-VALUE(RESULT(state,a),

α, β))
15: if v ≥ β then
16: return v
17: end if
18: α← MAX(α, v)
19: end for
20: end function
21:
22: function MIN-VALUE(state, α, β)
23: if TERMINAL-TEST(state) then
24: return +∞ if win, −∞ if lose
25: end if
26: if CUTOFF-TEST(state) then
27: return EVAL-FN(state)
28: end if
29: for each a in ACTIONS(state) do
30: v ←MIN(v, MAX-VALUE(RESULT(state,a),

α, β))
31: if v ≤ α then
32: return v
33: end if
34: β ← MIN(β, v)
35: end for
36: end function

2.4. State Evaluation

When the return value of the cutoff test is true, the
evaluation function will be executed to return a value which
represents the beneficial value for the win. And in the
evaluation function, a position evaluation function called
eval posi() is employed. It will return the score of a posi-
tion by counting the connection and transferring connection

TABLE 2. THE BASIC SCORE SETTINGS

Pattern Score Pattern Score
Five 10000000 next win 99900
Four 100000 BlockedFour 10000
Three 1000 BlockedThree 100
Two 100 BlockedTwo 10
One 10 BlockedOne 1

to score using the score setting table2. [2] After getting the
grades of each empty point, sum the all the grades up and
then name it as val. Initially, val become the only value
to evaluate a state. But I found this make the Agent be
confused with several special patterns such as two-three or
three-four. So I add two parameters to detect the ”must win”
or ”must lose” situation. Finally, the evaluation equation can
be expressed as

EV AL(state) = val + defense+ attatck.

And for more details, see algorithm2

Algorithm 2 Evaluation function
Input: the current game state
Output: the evaluation value representing the possibility to

win
1: Initialize two empty set called my must win,
op must win

2: for all empty point i do
3: v ← EVAL-POS(i)
4: # do not count small value which is negligible
5: if v > 100 then
6: val ← val + v
7: end if
8: if v > score[’FIVE’] then
9: add i ⇒ my must win if in my turn else
op must win

10: end if
11: end for
12: if len(my must win)≥ 2 then
13: att ←∞
14: end if
15: if len(op must win)≥ 2 then
16: def ← −∞
17: end if
18: return val + def + att

2.5. Algorithm acceleration

Even though I used α-β pruning and cutoff evaluation,
it also takes a lot of time to search the adversarial tree. So
it is necessary to take actions. I implement an approach to
reduce the search space and use Zobrist Hashing [3] to avoid
the duplicated search.

2.5.1. Informed Children Node Expansion. Instead of
expanding all the children of a parent node, I use a sorted
list to represent the children. And for each node, the



ACTIONS(state) will return the first k items. And the sort-
ing value for each child is calculated by EVAL POS(state)
method. After empirical verification, I found this approach
can significantly reduce the running time and will not
influence the result until the EVAL POS(state) method
calculated incorrectly or k is too small.

2.5.2. Zobrist Hashing. Zobrist Hashing is a popular and
easy way to avoid repeated calculations. In this way, each
chessboard has a hashing value that identifies a unique
situation.

Figure 1. An example for Zobrist Hashing.

For example in Figure1, two different move sequences
may result in the same board. So when program evaluates a
chessboard, the order of the past move sequences does not
matter. Zobrist Hashing is designed for such case. And the
steps for using Zobrist Hashing in Gomoku are as follows:

• Initialize. Initialize two random matrixes (large in-
teger) of size 15 × 15 for both white and black
player, denoted as MW and MB . And use number
zero to represent the origin chessboard denoted as
board hash. Finally, initialize a Python dictionary
named eval dict for later use.

• Take move. When white player takes move (i, j),
board hash = board hash ∧MW [i][j]. Similarly,
When black player takes move (i, j), board hash =
board hash ∧MB [i][j].

• Evaluate with dictionary. When doing evaluation,
check the eval dict use key board hash. If key
exists in board hash, fetch the value and compare
the depth to decide whether use it. Otherwise, do
the evaluation for the current state, and store the
current depth and the current board hash paired
with evaluation value into the eval dict.

Here ∧ is the logical operation XOR.

3. Empirical Verification

The very first verification I employed was the given
Python file name code check.py that can check whether my
algorithm is applicable. After my program can run normally,
the most important part becomes how to impove the power
of my Gomoku algorithm.

3.1. How to get debug data

Appreciating this semester’s Gomoku website, I can eas-
ily download the chessboard data where I find my program
do not take a correct move. What is more, I can play against
my algorithm, so that it becomes practical that I try to set

some special case and think why the program will get this
result.

3.2. How to debug

After getting the chessboard data, I found that the data is
represented in many rows where each row indicates a move.
So I write a method called log to chessboard(filename)
that can take a file name and return the corresponding
chessboard. And then I can judge my program similar to
the code check.py. But it is still a struggle for me to
debug step by step because the minimax search algorithm
is written recursively. So I wrote a simple print method that
can correctly print the tree view results through different
indent length. With the tree view, I can determine which
step make mistake and then modify it.

3.3. How to judge performance

There are generally two perspectives to judge the perfor-
mance. One is running time for each step and the other is the
accuracy of the value returned by my evaluation function.
And I use time method to easily judge the running time and
use step-by-step visualization provided by project website.

3.4. Result and Analysis

After acceleration, my algorithm can search at most six
depth with the length of children list being 4. But in this
case, sometimes the running time of one move may exceed
five seconds, especially when there are many empty points.
So I set the search depth to be five and the length of sorted
children list to be five. In this case, the average step time is
2 seconds which is much stable. And when I play against
my algorithm, I tend to not win until I pay much attention.

Because of the time limitation, my algorithm can not
search both deeply and widely. So the evaluation function
takes an important role in the game. Finally, my algorithm
can beat over 90% algorithm uploaded in the website.

References

[1] S. J. Russell and P. Norvig, Artificial intelligence: A Modern Approach,
3rd ed. Pearson Education, Inc., 2010, p. 161.

[2] S. Zhang, ”zhangshun97/ai gomocup,” 2018. [Online]. Available:https:
//github.com/zhangshun97/AI Gomocup/blob/master/final/score.py

[3] B. Bouzy and T. Cazenave, “Computer go: an ai oriented survey,”
Artificial Intelligence, vol. 132, no. 1, pp. 39–103, 2001.


