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1. Preliminaries

In this section, the IMP description and application will
be mentioned.

1.1. Problem Description and application

Influence Maximization Problem(IMP) originates from
Viral Marketing, where a company provides free samples
of a product to several influential individuals in a social
network so that they can market the product to others. It
is a way of Data mining and it has a lots of applications
such as products maketing and advertising. For example, in
facebook, we can use this algorithm to find some influential
users and pay money for them to advertise products. In
2003, Kempe et al. [3] formulate influence maximization
as an NP-hard combinatorial optimization problem on the
two pioneering diffusion models, namely, Independent Cas-
cade (IC) and Linear Threshold (LT). And they design an
approximation algorithm using greedy providing (1 − 1/e)
approximations.

This problem is described as (G, k). Given a social
network G and a positive integer k. Then the output is
the k influential individuals that will maximize the number
of influenced nodes (which also called influence spread) in
G through some special diffusion model. And in following
section, I will introduce detail of two fundamental diffusion
model named IC and LT.

2. Methodology

In this section, the frequently used notation will be
demonstrated first. And thr key data structure used to solve
this problem will be discussed. And the final part are the
model design and detail of algorithms.

2.1. Notation

The frequently used notations used in this report are
shown in table 1,

2.2. Key Data Structure

As introduced before, IMP are basically composed of
a graph G = (V,E). And for python 3.6, I use a dict-
of-dict structure to represent the graph. It is actually a

TABLE 1. FREQUENTLY USED NOTATIONS.

Notation Description

G = (V,E)
a social network G with a node set V and an edge
set E

n,m the numbers of nodes and edges in G, respectively
k the size of the seed set for influence maximization

dini indegree of node i

I(S) or IG(S)
the influence of a node set S in a diffusion process
on G.

IMM
a IMP algorithm which give a (1−1/e−ε) approx-
imation in near-linear time proposed by Tang et al
[4].

LT Linear Threshold diffusion model
IC Independent Cascade diffusion model

RR set The reserve reachable set
Ru a random RR set motivated by node u

R the set of RR sets generated by IMM’s sampling
phase

FR(S)
the fraction of RR sets [4] in R that are covered by
a node set S

p(e)
the probability that a edge will be taken when dif-
fusing

attributed graph with the probablity p(e) as the attribute.
So for the dict-of-dict data structure, a exmaple is shown
below table2. In this example, p(i, j) is equivalent to p(e).
And for convenience to generating the RR sets, I also stored
the transposition GT with all edges reversed.

And I store all the RR sets in R. RR set is kept in set
data structure and R is as a list of sets because R should
be mutable.

TABLE 2. DICT-OF-DICT EXAMPLE

key {key:probablity}
{j : p(i, j)}

i {k : p(i, k)}
{l : p(i, l)}

2.3. Model Design and Details of Algorithm

First of all, in order to solve IMP, I read serveral papers.
And I implement a improved greedy algorithm based on [3]
named CELF++ [2]. This algorithm can provide (1 − 1/e)
accurancy. Since it is just a greedy algorithm with a heap
structure, I just show a basic greedy frame in Algorithm1.
However, because evaluating I(S) is #P -hardness [5], when



the G is very large, it takes days to generate a seed set [3].
So I must change to another algorithm. Finally, I choose
algorithm which has been categorized as a sketch-based
algorithm in [5] called IMM [4].

Algorithm 1 Greedy(G, k)

the seed number k and the social network G =
(V,E). S: the seed set S ← ∅ i ← 1, ..., k u ←
argmaxu∈(V −S)( I(S ∪u)-I(S) ) S ← S ∪ u return S

And now I will introduce the main steps and the main
algorithms I implemented in IMM. At first, IMM contains
two steps:

1) Do sampling for G to generate a R which contains
many RR sets.And a RR set contain the influential
nodes in one ”sampling”.

2) Finding Max-Coverage: Use the greedy algorithm
for the Max-coverage problem [6] to find a seed
set S that covers the maximum number of RR sets
and return S as the solution. Note that the standard
greedy algorithm for Max-Coverage will just derive
a (1− 1/e) approximate solution.

As shown in Algorithm2, we firstly do sampling to get
all the RR sets stored in R and then select the k influential
nodes from R. And these two parts will be explained in
succession.

Algorithm 2 IMM(G, k, ε, `)

` = `·(1 + log2/logn) R ←Sampling(G, k, ε, `) S ←
NodeSelection(R, k) return S

2.3.1. Sampling. Generally speaking, sampling is a way to
narrow the node range which could be influential. And this
is done by generate a RR set [1]. Here is the definition of
RR set.
Definition 1 (REVERSE REACHABLE SET). Let v be

a node in G, and g be a graph obtained by removing
each edge e in G with 1 p(e) probability. The reverse
reachable (RR) set for v in g is the set of nodes in g
that can reach v. (That is, for each node u in the RR set,
there is a directed path from u to v in g.)

Before illustrating how RR set is be generated, I would
like to show the details of two fundamental diffusion mod-
els. Because the way of generating RR sets varies from
different diffusion models.
Definition 2 (Independent Cascade). Independent Cas-

cade(IC) is a widely-used fusion model. It considers a
vertex v is activated by each of its incoming neighbors
independently by an influence probability p(u, v). And
this probablity is calculated as 1/dinv where the dinv is
the in-degree of v. Each node can only used to active its
neighbours only right after the timestamp it is actived,
i.e., if u is actived by a node at timestamp i, it can only
active its neighbors at timestamp i+1.

Definition 3 (Linear Threshold). The second one is LT.
Linear Threshold Model(LT) is also a seminal diffusion
model. The basic idea is that a vertex is activated only
if the sum of its incoming actice neighbours’ influen-
cial power is large than a threshold value. And each
node will have a random threshold. And the influencial
power for one incoming is calculated as the same as the
propagation probablity which is 1/dinv for a node v.

And the key concept of Sampling is that pick a node u
randomly and find all the nodes that may have influence to
u. These nodes is just the RR set. The whole procedure is
shown in Algorithm3.

Algorithm 3 RR(G)
G = (V,E) a RR set u ←a node picked randomly
form G RR ← ∅ RR.append(u) RR is not empty i ←
RR.pop(0) each j points to i Activate j with probablity
p(i, j) Append j to RR if j is actived return all the
nodes that have been added into RR.

And for the IC model, we set the propagation probability
p(i, j) to 1/d, where d denotes the number of edges that
share the same ending point with i. While for the LT model,
p(i, j) is construsted as following steps: (i)we first assign
each incoming neighbor of i including j a random number
between [0,1]. (ii)Normalize these random number so that
they sum up to one. (iii) p(i, j)=1 if 1/dini is larger than
the random number of j, otherwise p(i, j)=0.

And the whole procedure of Sampling is just set some
special count to control the total times of calling RR to guar-
antee a theoretical accurancy. Because if the total number of
RR sets is too small, then the solution NodeSelection phase
will not be very good. However, if the number becomes very
large, the algorithm will spend a lots of time. So Tang et
al. [4] proposed IMM which use a martingale approach to
solve this problem. And my sampling phase is totally the
same as Sampling in [4].

2.3.2. NodeSelection. The algorithm corresponds to the
standard greedy approach for the maximum coverage prob-
lem [6], which guarantees that FR(S) is at least (1− 1/e)
times the fraction of RR sets covered by any size-k node
set. And the details are shown in Algorithm4.

Algorithm 4 NodeSelection(R(S), k)
the seed number k and the social network G = (V,E).
S: the seed set S ← ∅ i ← 1, ..., k u ← argmax
u∈(V −S) ( FR(S ∪u)−FR(S) ) S ← S ∪ u return S

3. Empirical Verification

This part is about the performance and the testing
method of my program. In the following section, I will give
a detail explaination of the data set and the perfomance.
After that, I will analyse the reason why it works like that.



3.1. Date set

Beside the data set provided by OJ platform, I also test
my program, I also use the data mentioned in [4] to judge
whether my implementation is good or not. The first network
is from the full paper list of the ”Physics” section of the e-
print arXiv, denoted as NetPHY. And the second network is
from the full user list of the Amazon, denoted as Amazon.
And the third network is download from QQ group denoted
as DBLP. The detail information are shown in table3.

TABLE 3. DATASETS.

Name n m
NetHEPT 15.2K 32.2K
NetPHY 37.2k 231.6k
DBLP 425.7K 15.8K

Amazon 548.5K 13.5K

3.2. Perfomance Measure

To evaluate my program performance, for the data set
provided by platform, I just submit my code and compare
my algorithm’s infuence spread and running time with oth-
ers. While for the other data set, I first test the running
time in my own computer and compute the influence spread.
Because these are all widely used data sets, I can easily
compared my influence spread with the results shown in
different papers. And I don’t care about the exact number
of the influence spread, Instead, I just to compare whether
my results is at the same level with all others’ algorithm
in different papers. And it shows that all of my results can
meet a (1-1/e) approximation. So I will focus on the running
time upon different data sets instead of the influence spread.
And here is the information about my laptop.

TABLE 4. BASIC INFOMATION ABOUT MY LABTOP

CPU Intel(R)Core(TM) i3-4005U
Frequence @1.70Hz @1.70Hz

RAM 4GB
System x64 Windows7

3.3. Hyperparameters

In IMM, two parametes should be set. One is ε and the
other is `. And IMM will returns a (1−1/e−ε)- approximate
solution with at least 1 − 1/n` probability. And I set ε as
0.5 and ` as 1, which is recommanded in [4].

3.4. Experimental Results

The results tested in my laptop shows in the following
table5 (all value are rounded to integer).

TABLE 5. EXPERIMENTAL RESULTS

Data set k spread(IC) spread(LT) running time
Amazon 5 82 102 41s(IC,LT)
Amazon 50 630 842 35s(IC),36s(LT)
DBLP 5 117 177 24s(IC,LT)
DBLP 50 651 987 25s(IC,LT)

NetHEPT 5 321 390 1s(IC),2s(LT)
NetHEPT 50 1286 1670 3s(IC,LT)
NetPHY 5 314 731 6s(IC),8s(LT)
NetPHY 50 1687 2794 11s(IC),15s(LT)

3.5. Conclusion

This paper implement IMM proposed by Tang et al [4],
an influence maximization algorithm runs in O((k + `)(n
+ m)log n/ε2) expected time and returns a (1 − 1/e − ε)-
approximation with at least 1-1/n` probability under the IC
and LT diffusion model. As stated in [4], IMM has the
same approximation guarantee and time complexity as the
state of the art, but achieves higher empirical efficiency
with a novel algorithm design based on martingales. And
my experimental results also show that IMM consistently
outperforms the states of the art in terms of computation
efficiency.
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